SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI P. G. Department of Applied Electronics (Faculty of Science and Technology)

ATTAINMENT OF PROGRAMME OUTCOMES (PO), PROGRAMME SPECIFIC OUTCOMES (PSO) AND COURSE OUTCOMES (CO) - SAMPLE METHODS AND STRATEGIES

NAME OF THE DEPARTMENT: APPLIED ELECTRONICS									
Methods/Strategies of measuring the attainment level of:									
Programme Outcomes (PO)		Programme Specific Outcomes (PSO)		Course Outcomes (CO)					
1.	At the time of completion of the	1.	At the end of the two-year M. Sc.	1.	Student are able to explain				
	programme, the student will able		Applied Electronics programme,		different branches of Electronics				
	to develop extensive knowledge		the student will understand and		such as Electronic Devices and				
	in various areas of Electronics.		be able to explain different		Circuits, Linear and Digital				
2.	Apply the knowledge of		branches of Electronics such as		Integrated Circuits,				
	mathematics, science,		Electronic Devices and Circuits,		Communication Engineering,				
	engineering fundamentals and		Linear and Digital Integrated		Analog and Digital Electronics,				
	electronics to the solution of		Circuits, Communication		Microprocessors,				
	engineering problems.		Engineering, Analog and Digital		Microcontrollers, VLSI, Embedded				
3.	Identify, formulate, research		Electronics, Microprocessors,		Systems, Smart Sensors, Digital				
	literature, and analyse science		Microcontrollers, VLSI, Embedded		Signal Processing, Microwave				
	and engineering problems using		Systems, Smart Sensors, Digital		Engineering, Embedded System				
	the first principles of		Signal Processing, Microwave		Design, Computer Organization,				
1	mathematics and engineering		Engineering, Embedded System		Optical Fiber Communications,				
	sciences.		Design, Computer Organization,		Mobile Communications, etc.				
4.	Understand solutions for		Optical Fiber Communications,	2	Student performed laboratory				
	electronic and allied systems and		Mobile Communications, etc.		experiments or practical on				
	design system modules or	2.	Courses in foundational subjects		courses in foundational subjects				
	processes that meet the specified		like Electrical Engineering and		like Electrical Engineering and				
	needs with appropriate societal		Network Analysis, Electronic		Network Analysis, Electronic				
	consideration.		Devices and Circuits, Linear		Devices and Circuits, Linear				
5.	Choose and apply appropriate		Integrated Circuits, Linear and		Integrated Circuits, Linear and				
	modern		Digital Integrated circuits,		Digital Integrated circuits.				
	tools/frameworks/platforms,		Microprocessors and		Microprocessors and				
	software simulators, techniques,		Microcontrollers, Digital Signal		Microcontrollers. Digital Signal				
	resources, and modern		Processing, Microwave		Processing, Microwave				
	engineering and IT tools for		Engineering, Optical Fiber						

ATTAINMENT OF PO, PSO AND CO for Programme: M. Sc. Applied Electronics

	solving engineering problems		Communication Engineering,		Engineering, Optical Fiber
	with an understanding of the		Embedded System Design, etc.		Communication Engineering,
	limitations.		have a prominent lab component,		Embedded System Design, etc.
5.	Function effectively as an		offering hands-on training and	3.	Students are offered hands-on
	individual, and as a member or		exercises on numerous practical		training on numerous practical
	leader in diverse teams.		aspects of crucial importance.		aspects of crucial importance.
7.	Communicate effectively on	Ар	ostgraduate of the M. Sc. Applied	4.	Students are acquainted with the
	engineering activities with the		Electronics Program will		operation, handling and usage of
	science and engineering		demonstrate:		laboratory electronic instruments
	community and with the society	3.			in practical, project work, product
	at large, such as, being able to		An ability to understand the basic	C	design, etc.
	comprehend and write effective		concepts in Electronics &	5.	Performance in Seminars
	reports and make effective		Communication Engineering and		
	presentations.		to apply them to various areas,	6.	Performance in Projects, which
			like Electronics, Communications,		aim to solve real-world problems
			Signal processing, VLSI,	7.	Skill development through hands-
			Embedded systems etc., in the		on training workshops
			design and implementation of	8.	Ability to design and fabricate PCB
			systems.		for electronic circuit
		4.	An ability to solve Electronics and	_	
			communication Engineering	9.	Survey from students
			problems, using latest hardware		
			and software tools, along with		
			analytical skills to arrive at cost		
			effective and appropriate		
			solutions.		
		5.	Skill development by undertaking		
			supervised projects by students		
			with a flexibility to balance		
			between research- and		
			application-oriented work that		
			require innovative approaches.		
		<u> </u>		I	

The Post Graduate Department of Applied Electronics of Sant Gadge Baba Amravati University, Amravati offers a four-semester PG course in M. Sc. Applied Electronics with specific Programme Outcomes, Programme Specific Outcomes and Course Outcomes.

From viewpoints of Programme Outcomes (PO), it is noticed that the students of M. Sc. Applied Electronics programme undertake projects to seek the solutions of problems and they complete this project work during the third and the fourth semester of the programme. For delivering seminars on state-of-the-art topics, students understood the importance of much needed literature review. They also acquired distinctive skills required for design and fabrication of low-cost energyefficient LED lamps from the teachers of the department and provided training to their junior student-colleagues under the supervision of the faculty of the department. In addition, our students also provided hands-on training to aspiring students of other affiliated science colleges affiliated to Sant Gadge Baba Amravati University, who participated in LED lamp fabrication workshops organized by the Department of Applied Electronics, every year. Students carry out their project work in groups, wherein one of the students having the best academic performance within a group acts as a group leader. Students participated in various department level, college level, university level, state level competitions, etc. by demonstrating their working model, poster, ideas, etc. They are able to present their work effectively through oral presentations as well as through documented technical reports. Students were also able to qualify in NET and SET examinations. This is how, the Programme Outcomes (PO) are achieved by the students.

So far as the Programme Specific Outcomes (PSO) are concerned, students comprehended different branches of Electronics such as Electronic Devices and circuits, Linear and Digital Integrated Circuits, Communication Engineering, Analog and Digital Electronics, Microprocessors, Microcontrollers, VLSI, Embedded System Design, Computer Organization, Optical Fiber Communications, Mobile Communications, etc. They also had a rigorous laboratory exposure (experiments/practical/hands-on) on crucial components of foundational subjects like Electrical Engineering and Network Analysis, Electronic Devices and Circuits, Linear and Digital Integrated Circuits, Microprocessors and Microcontrollers, Digital Signal Processing, Microwave Engineering, Optical Fiber Communication, Embedded System Design, etc. As a result, students could use these concepts in design and implementation of electronic systems. Students were also trained with latest hardware and software tools in order to suggest cost-effective solutions to problems faced by our society. Every year, final year students undertake supervised projects under the guidance of a teacher, who works as a project-guide and students in turn prove their ability to solve electronics and communication engineering and allied engineering problems using innovative approaches of electronics science and technology.

The M. Sc. Applied Electronics programme is comprised of 33 different courses distributed over four semesters. These courses constitute 15 Theory courses, 5 Professional Elective Courses, 12 Laboratory courses, Project and Seminar, etc. Every course has its unique course outcome. Students are evaluated in all these 33 courses by university end-semester examinations. Moreover, students are also assessed internally in the aforementioned courses by the concerned assigned teacher. In view of this, attainment of course outcomes can be measured by internal assessment of students by conducting test papers, surprise examinations, problem solving sessions, seminars and assignments. It can also be evaluated from the performance of the students in the practical and laboratory sessions. Concerned teacher in-charge of the course is made responsible for internal assessment of students. The knowledge level of students can be examined with viva-voice and communication skills.

Generally, Course outcomes (CO) can be assessed in terms of achievement of students in the university examinations. In addition, attainments of course outcomes are also evident in terms of the quality and utility of project work undertaken and completed by students, quality of the seminars presented by students, quality of the fabricated or designed models (systems or gadgets) by students, technical reports describing project, seminar, etc. So far as attainment of Project course outcome is concerned, students show a sound technical knowledge of their selected project topic. Students design the system or product (module) incorporating hardware or software or coexistence of hardware and software (hybrid approach). They are able to synthesize the results. They can interpret the results for application to the problem chosen. They can develop the concept followed by a detailed design solution.

All students deliver a seminar on advanced topics (not included in the curriculum) before an evaluation committee of the department. Students study research papers to understand a new field in the absence of a textbook. They

summarize and review the literature studied. After identifying promising new directions of various cutting-edge technologies, they choose an appropriate topic for seminar presentation. Attainment of the course outcome of the seminar can be measured by taking into account the following factors, such as, the clarity of speech, appropriateness of the level of material, familiarity with the topic including current research findings, thoroughness of the ideas presented and the analysis, overall organization and integration, presentation skills, etc.

From the analysis of the university examination results over the last five years, it is noticed that on an average 80% of the students are able to attain the course objectives, satisfactorily. During the preceding five years, it is also observed that girl students (cumulative total 60) outnumbered boys (cumulative total 24) in postgraduates produced by the department.

In order to cope up with the most recent developments and trends in the technology, the contents of the courses are brought up-to-date by revising the curriculum of M. Sc. Applied Electronics programme, periodically.